The multi-dimensional limiters for solving hyperbolic conservation laws on unstructured grids

نویسندگان

  • Wanai Li
  • Yu-Xin Ren
  • Guodong Lei
  • Hong Luo
چکیده

Novel limiters based on the weighted average procedure are developed for finite volume methods solving multi-dimensional hyperbolic conservation laws on unstructured grids. The development of these limiters is inspired by the biased averaging procedure of Choi and Liu [10]. The remarkable features of the present limiters are the new biased functions and the weighted average procedure, which enable the present limiter to capture strong shock waves and achieve excellent convergence for steady state computations. The mechanism of the developed limiters for eliminating spurious oscillations in the vicinity of discontinuities is revealed by studying the asymptotic behavior of the limiters. Numerical experiments for a variety of test cases are presented to demonstrate the superior performance of the proposed limiters. 2011 Elsevier Inc. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The multi-dimensional limiters for discontinuous Galerkin methods on unstructured grids

High order limiters remain one of the main challenges for discontinuous Galerkin (DG) methods in solving hyperbolic conservation laws. This paper proposes an efficient limiting procedure for the DG method. The key feature is to construct additional polynomials from the solutions on neighboring cells by means of secondary reconstruction. Then the limited solution on current cell can be obtained ...

متن کامل

Convergence of a Finite Volume Extension of the Nessyahu–tadmor Scheme on Unstructured Grids for a Two-dimensional Linear Hyperbolic Equation∗

Abstract. The nonoscillatory central difference scheme of Nessyahu and Tadmor is a Godunovtype scheme for one-dimensional hyperbolic conservation laws in which the resolution of Riemann problems at the cell interfaces is bypassed thanks to the use of the staggered Lax–Friedrichs scheme. Piecewise linear MUSCL-type (monotonic upstream-centered scheme for conservation laws) cell interpolants and ...

متن کامل

Runge-Kutta discontinuous Galerkin method using a new type of WENO limiters on unstructured meshes

In this paper we generalize a new type of limiters based on the weighted essentially nonoscillatory (WENO) finite volume methodology for the Runge-Kutta discontinuous Galerkin (RKDG) methods solving nonlinear hyperbolic conservation laws, which were recently developed in [31] for structured meshes, to two-dimensional unstructured triangular meshes. The key idea of such limiters is to use the en...

متن کامل

A Runge-Kutta Discontinuous Galerkin Method with Conservation Constraints to Improve CFL Condition for Solving Conservation Laws

We present a new formulation of the Runge-Kutta discontinuous Galerkin (RKDG) method [7, 6, 5, 4] for conservation Laws. The new formulation requires the computed RKDG solution in a cell to satisfy additional conservation constraint in adjacent cells and does not increase the complexity or change the compactness of the RKDG method. We use this new formulation to solve conservation laws on one-d...

متن کامل

Convergence of a staggered Lax-Friedrichs scheme on unstructured 2D-grids

Based on Nessyahu's and Tadmor's nonoscillatory central di erence schemes for one-dimensional hyperbolic conservation laws [14], for higher dimensions, several nite volume extensions and numerical results on structured and unstructured grids have been presented. The experiments show the wide applicability of these multidimensional schemes. The theoretical arguments which support this, are some ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Comput. Physics

دوره 231  شماره 

صفحات  -

تاریخ انتشار 2011